首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6503篇
  免费   479篇
  国内免费   435篇
  2024年   12篇
  2023年   95篇
  2022年   119篇
  2021年   214篇
  2020年   232篇
  2019年   256篇
  2018年   207篇
  2017年   195篇
  2016年   223篇
  2015年   219篇
  2014年   243篇
  2013年   357篇
  2012年   224篇
  2011年   243篇
  2010年   209篇
  2009年   306篇
  2008年   351篇
  2007年   379篇
  2006年   305篇
  2005年   288篇
  2004年   227篇
  2003年   221篇
  2002年   225篇
  2001年   154篇
  2000年   140篇
  1999年   126篇
  1998年   124篇
  1997年   126篇
  1996年   125篇
  1995年   118篇
  1994年   125篇
  1993年   98篇
  1992年   103篇
  1991年   117篇
  1990年   82篇
  1989年   100篇
  1988年   63篇
  1987年   59篇
  1986年   64篇
  1985年   62篇
  1984年   51篇
  1983年   45篇
  1982年   49篇
  1981年   28篇
  1980年   38篇
  1979年   22篇
  1978年   10篇
  1977年   12篇
  1976年   9篇
  1975年   5篇
排序方式: 共有7417条查询结果,搜索用时 31 毫秒
101.
102.
Summary Physical, nutritional and defensive qualities of seeds differ in the extent to which they influence granivore preference. In a study aimed to quantifying those differences, Ord's kangaroo rats (Dipodomys ordii) were found to prefer the seeds of just three of twenty-nine species: Cryptantha crassisepala, Oryzopsis hymenoides and Salsola kali. Oryzopsis hymenoides was most preferred during the early plant growth season (April–July); preference for S. kali peaked during late (August–November) and dormant (December–March) seasons; and greatest preference for C. crassisepala occurred during dormant and early seasons. Regression of forage ratios, averaged across seasons, against seed length, mass, abundance, patchiness, percent nitrogen, energy content, and chemical defenses showed seed length to be the most important predictor of seed preference. Seed length combined with nitrogen (protein) content and levels of two defensive compounds, saponins and non-protein amino acids, to account for 68% of the variation in seed preference. The importance of seed length rather than biomass indicated that there are limits to the ability of D. ordii to detect small seeds and that small size facilitated escape of dispersed seeds. Seasonality in preference suggested, however, that seed escape was encountered by predispersal harvesting of newly maturing seeds still on plants. Maximization of protein intake contradicted previously published observations, but presumably reflected low nitrogen availability. In addition to small size, the presence of saponins or non-protein amino acids in seeds was sufficient to negate the positive influence of higher protein content.  相似文献   
103.
Spiders can use air particle movements to localize moving prey. We studied the responses of 32 wind-sensitive interneurones in the hunting spider Cupiennius salei to prey stimuli. Stimulation with a tethered flying fly or with artificial air pulses activated plurisegmental interneurones that responded to changes in air movement velocity and were thus well suited to represent the highly fluctuating air stream typical of prey stimuli. In most interneurones (n = 18) the responses to the stimulation of different legs were not significantly different from each other. Different interneurones had different response characteristics and their latencies largely overlapped suggesting that there is parallel processing of the signals by populations of interneurones with different response characteristics. In two interneurones the number of spikes and the spiking pattern elicited by stimulation of each of the eight legs markedly differed depending on the leg stimulated. These neurones may play an important role in directional information processing. Stimulation of the adjacent legs from front to back or from back to front revealed two interneurones sensitive to the direction of successive stimulation of the legs. These neurones may be able to detect the motion of an air movement source in a preferred direction and thus act as nearfield motion detectors to localize a moving prey item. Accepted: 28 September 1996  相似文献   
104.
105.
Though some research exists concerning general behavior and activity patterns of Walruses in zoos or aquariums, less is known about how these patterns change in response to various environmental and temporal contexts. This study presents two studies assessing behavioral changes in relation to feeding period, object enrichment (OE), and season in a social group of four Pacific Walruses at the New York Aquarium. Study 1 examined behavior in relation to feeding context (nonfeed, prefeed, postfeed); data were collected over a three‐week period, resulting in 47 observation sessions for each feeding context. Study 2 examined behavior in relation to OE and season; data were collected in two phases resulting in 12 enrichment and 9 no‐enrichment (NE) observation sessions (Phase 1), and 21 enrichment and 18 NE observation sessions (Phase 2). Study 1 showed that after feeding, oral behavior increased while social behavior and total swim frequency decreased. In Study 2, both swim frequency and social behavior were found to interact with OE and phase, while oral behavior remained constant across all conditions. As in the wild, both studies found all animals to be swimming the majority of the time. Though every animal spent much of its swim time engaged in an Individual Swimming Pattern (ISP), both studies showed that the proportion of ISP (in relation to total time swimming) remained stable across all contexts, suggesting a potential functional role of the ISPs. These results are discussed in light of the ongoing debate over the role of stereotypies in welfare assessment. Zoo Biol 29:397–404, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   
106.
Central American squirrel monkeys (Saimiri oerstedi) appear to recognize the modified leaves that phyllostomid bats utilize for diurnal roost sites. The monkeys visually and manually search these bat tents for both bats and insects. Adult males are the most successful at capturing bats. Nonvolant juvenile bats are more vulnerable to monkey predation than are adults. Bats that escape monkey predation frequently are captured by doubletoothed kites (Harpagus bidentatus) that tend foraging troops of monkeys. Predation by squirrel monkeys, coupled with that of double-toothed kites, may be a significant source of mortality for tent-making bats.  相似文献   
107.
Feeding behavior and plant response to feeding were studied for the aphid Aphis gossypii Glover on susceptible and resistant melons(cv.Iroquois and TGR-1551,respectively).Average phloem phase bout duration on TGR-1551 was<7% of the duration on Iroquois.Sixty-seven percent of aphids on TGR-1551 never produced a phloem phase that attained ingestion(EPG waveform E2)in contrast to only 7% of aphids on Iroquois.Average bout duration of waveform E2(scored as zero if phloem phase did not attain E2)on TGR-1551 was<3% of the duration on Iroquois.Conversely,average bout duration of EPG waveform El(sieve element salivation)was 2.8 times greater on TGR-1551 than on Iroquois.In a second experiment,liquid nitrogen was used to rapidly cryofix leaves and aphids within a few minutes after the aphids penetrated a sieve element.Phloem near the penetration site was then examined by confocal laser scanning microscopy.Ninety-six percent of penetrated sieve elements were occluded by protein in TGR-1551 in contrast to only 28% in Iroquois.Usually in TGR-1551,occlusion was also observed in nearby nonpenetrated sieve elements.Next,a calcium channel blocker,trivalent lanthanum,was used to prevent phloem occlusion in TGR-1551,and A.gossypii feeding behavior and the plants phloem response were compared between lanthanum-treated and control TGR-1551.Lanthanum treatment eliminated the sieve element protein occlusion response and the aphids readily ingested phloem sap from treated plants.This study provides strong evidence that phloem occlusion is a mechanism for resistance against A.gossypii in TGR-1551.  相似文献   
108.
Prenatal exposure to alcohol causes a wide range of deficits known as fetal alcohol spectrum disorders (FASDs). Many factors determine vulnerability to developmental alcohol exposure including timing and pattern of exposure, nutrition and genetics. Here, we characterized how a prevalent single nucleotide polymorphism in the human brain‐derived neurotrophic factor (BDNF) gene (val66met) modulates FASDs severity. This polymorphism disrupts BDNF's intracellular trafficking and activity‐dependent secretion, and has been linked to increased incidence of neuropsychiatric disorders such as depression and anxiety. We hypothesized that developmental ethanol (EtOH) exposure more severely affects mice carrying this polymorphism. We used transgenic mice homozygous for either valine (BDNFval/val) or methionine (BDNFmet/met) in residue 68, equivalent to residue 66 in humans. To model EtOH exposure during the second and third trimesters of human pregnancy, we exposed mice to EtOH in vapor chambers during gestational days 12 to 19 and postnatal days 2 to 9. We found that EtOH exposure reduces cell layer volume in the dentate gyrus and the CA1 hippocampal regions of BDNFmet/met but not BDNFval/val mice during the juvenile period (postnatal day 15). During adulthood, EtOH exposure reduced anxiety‐like behavior and disrupted trace fear conditioning in BDNFmet/met mice, with most effects observed in males. EtOH exposure reduced adult neurogenesis only in the ventral hippocampus of BDNFval/val male mice. These studies show that the BDNF val66met polymorphism modulates, in a complex manner, the effects of developmental EtOH exposure, and identify a novel genetic risk factor that may regulate FASDs severity in humans.  相似文献   
109.
110.
Prostaglandin E2 (PGE2) is an endogenous lipid molecule involved in normal brain development. Cyclooxygenase‐2 (COX2) is the main regulator of PGE2 synthesis. Emerging clinical and molecular research provides compelling evidence that abnormal COX2/PGE2 signaling is associated with autism spectrum disorder (ASD). We previously found that COX2 knockout mice had dysregulated expression of many ASD genes belonging to important biological pathways for neurodevelopment. The present study is the first to show the connection between irregular COX2/PGE2 signaling and autism‐related behaviors in male and female COX2‐deficient knockin, (COX)‐2?, mice at young (4‐6 weeks) or adult (8‐11 weeks) ages. Autism‐related behaviors were prominent in male (COX)‐2? mice for most behavioral tests. In the open field test, (COX)‐2? mice traveled more than controls and adult male (COX)‐2? mice spent less time in the center indicating elevated hyperactive and anxiety‐linked behaviors. (COX)‐2? mice also buried more marbles, with males burying more than females, suggesting increased anxiety and repetitive behaviors. Young male (COX)‐2? mice fell more frequently in the inverted screen test revealing motor deficits. The three‐chamber sociability test found that adult female (COX)‐2? mice spent less time in the novel mouse chamber indicative of social abnormalities. In addition, male (COX)‐2? mice showed altered expression of several autism‐linked genes: Wnt2, Glo1, Grm5 and Mmp9. Overall, our findings offer new insight into the involvement of disrupted COX2/PGE2 signaling in ASD pathology with age‐related differences and greater impact on males. We propose that (COX)‐2? mice might serve as a novel model system to study specific types of autism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号